Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 84(1): 71-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23604140

RESUMO

Bitopic binding properties apply to a variety of muscarinic compounds that span and simultaneously bind to both the orthosteric and allosteric receptor sites. We provide evidence that fluorescent pirenzepine derivatives, with the M1 antagonist fused to the boron-dipyrromethene [Bodipy (558/568)] fluorophore via spacers of varying lengths, exhibit orthosteric/allosteric binding properties at muscarinic M1 receptors. This behavior was inferred from a combination of functional, radioligand, and fluorescence resonance energy transfer binding experiments performed under equilibrium and kinetic conditions on enhanced green fluorescent protein-fused M1 receptors. Although displaying a common orthosteric component, the fluorescent compounds inherit bitopic properties from a linker-guided positioning of their Bodipy moiety within the M1 allosteric vestibule. Depending on linker length, the fluorophore is allowed to reach neighboring allosteric domains, overlapping or not with the classic gallamine site, but distinct from the allosteric indolocarbazole "WIN" site. Site-directed mutagenesis, as well as molecular modeling and ligand docking studies based on recently solved muscarinic receptor structures, further support the definition of two groups of Bodipy-pirenzepine derivatives exhibiting distinct allosteric binding poses. Thus, the linker may dictate pharmacological outcomes for bitopic molecules that are hardly predictable from the properties of individual orthosteric and allosteric building blocks. Our findings also demonstrate that the fusion of a fluorophore to an orthosteric ligand is not neutral, as it may confer, unless carefully controlled, unexpected properties to the resultant fluorescent tracer. Altogether, this study illustrates the importance of a "multifacet" experimental approach to unravel and validate bitopic ligand binding mechanisms.


Assuntos
Compostos de Boro/farmacologia , Corantes Fluorescentes/farmacologia , Pirenzepina/análogos & derivados , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Regulação Alostérica , Sítio Alostérico , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Trietiodeto de Galamina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ligantes , Mutagênese Sítio-Dirigida/métodos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pirenzepina/farmacologia
2.
J Med Chem ; 55(5): 2125-43, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22329602

RESUMO

Two fluorescent derivatives of the M1 muscarinic selective agonist AC-42 were synthesized by coupling the lissamine rhodamine B fluorophore (in ortho and para positions) to AC42-NH(2). This precursor, prepared according to an original seven-step procedure, was included in the study together with the LRB fluorophore (alone or linked to an alkyl chain). All these compounds are antagonists, but examination of their ability to inhibit or modulate orthosteric [(3)H]NMS binding revealed that para-LRB-AC42 shared several properties with AC-42. Carefully designed experiments allowed para-LRB-AC42 to be used as a FRET tracer on EGFP-fused M1 receptors. Under equilibrium binding conditions, orthosteric ligands, AC-42, and the allosteric modulator gallamine behaved as competitors of para-LRB-AC42 binding whereas other allosteric compounds such as WIN 51,708 and N-desmethylclozapine were noncompetitive inhibitors. Finally, molecular modeling studies focused on putative orthosteric/allosteric bitopic poses for AC-42 and para-LRB-AC42 in a 3D model of the human M1 receptor.


Assuntos
Corantes Fluorescentes/síntese química , Sondas Moleculares/síntese química , Piperidinas/síntese química , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Rodaminas/síntese química , Regulação Alostérica , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Ensaio Radioligante , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/genética , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/química , Rodaminas/farmacologia , Solubilidade , Relação Estrutura-Atividade
3.
J Biol Chem ; 284(29): 19533-43, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19451648

RESUMO

Ligand binding to G protein-coupled receptors is a complex process that involves sequential receptor conformational changes, ligand translocation, and possibly ligand-induced receptor oligomerization. Binding events at muscarinic acetylcholine receptors are usually interpreted from radioligand binding studies in terms of two-step ligand-induced receptor isomerization. We report here, using a combination of fluorescence approaches, on the molecular mechanisms for Bodipy-pirenzepine binding to enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors in living cells. Real time monitoring, under steady-state conditions, of the strong fluorescence energy transfer signal elicited by this interaction permitted a fine kinetic description of the binding process. Time-resolved fluorescence measurements allowed us to identify discrete EGFP lifetime species and to follow their redistribution upon ligand binding. Fluorescence correlation spectroscopy, with EGFP brightness analysis, showed that EGFP-fused muscarinic M1 receptors predominate as monomers in the absence of ligand and dimerize upon pirenzepine binding. Finally, all these experimental data could be quantitatively reconciled into a three-step mechanism, with four identified receptor conformational states. Fast ligand binding to a peripheral receptor site initiates a sequence of conformational changes that allows the ligand to access to inner regions of the protein and drives ligand-receptor complexes toward a high affinity dimeric state.


Assuntos
Compostos de Boro/metabolismo , Pirenzepina/análogos & derivados , Receptor Muscarínico M1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Algoritmos , Ligação Competitiva , Compostos de Boro/química , Linhagem Celular , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Ligantes , Modelos Químicos , Pirenzepina/química , Pirenzepina/metabolismo , Multimerização Proteica , Transporte Proteico , Receptor Muscarínico M1/química , Receptor Muscarínico M1/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...